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Pretace

Big data is characterized by three fundamental dimensions: Volume,
Velocity, and Variety, The Three V’s of Big Data. The Volume
expresses the amount of data, Velocity describes the speed at which data
is arriving and being processed, and Variety refers to the number of
types of data.

The data could come from anywhere, including social media, various
sensors, financial transactions, etc. IBM has stated! that people create
2.5 quintillion bytes of data every day, this number is growing
constantly and most of it cannot be stored and is usually wasted
without being processed. Today, it is not uncommon to process terabyte-
or petabyte-sized corpora and gigabit-rate streams.

On the other hand, nowadays every company wants to fully
understand the data it has, in order to find value and act on it. This led
to the rapid growth in the Big Data Software market. However,
the traditional technologies which include data structures and
algorithms, become ineffective when dealing with Big Data. Therefore,

'What Is Big Data? https://www.ibm.com/software/data/bigdata/what-is-big-data.html
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many software practitioners, again and again, refer to computer science
for the most appropriate solutions and one option is to use probabilistic
data structures and algorithms.

Probabilistic data structures is a common name for data structures
based mostly on different hashing techniques. Unlike regular (or
deterministic) data structures, they always provide approximated
answers but with reliable ways to estimate possible errors. Fortunately,
the potential losses and errors are fully compensated for by extremely
low memory requirements, constant query time, and scaling, the factors
that become essential in Big Data applications.

About this book

The purpose of this book is to introduce technology practitioners which
includes software architects and developers, as well as technology
decision makers to probabilistic data structures and algorithms. Reading
this book, you will get a theoretical and practical understanding of
probabilistic data structures and learn about their common uses.

This is not a book for scientists, but to gain the most out of it you
will need to have basic mathematical knowledge and an understanding
of the general theory of data structures and algorithms. If you do not
have any “computer science” experience, it is highly recommended you
read Introduction to Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein (MIT), which provides
a comprehensive introduction to the modern study of computer
algorithms.

While it is impossible to cover all the existing amazing solutions,
this book is to highlight their common ideas and important areas of
application, including membership querying, counting, stream mining,
and similarity estimation.



Organization of the book

This book consists of six chapters, each preceded by an introduction
and followed by a brief summary and bibliography for further reading
relating to that chapter. Every chapter is dedicated to one particular
problem in Big Data applications, it starts with an in-depth explanation
of the problem and follows by introducing data structures and algorithms
that can be used to solve it efficiently.

The first chapter gives a brief overview of popular hash functions
and hash tables that are widely used in probabilistic data structures.
Chapter 2 is devoted to approximate membership queries, the most
well-known use case of such structures. In chapter 3 data structures that
help to estimate the number of unique elements are discussed. Chapters
4 and 5 are dedicated to important frequency- and rank-related metrics
computations in streaming applications. Chapter 6 consists of data
structures and algorithms to solve similarity problems, particularly —
the nearest neighbor search.

This book on the Web

You can find errata, examples, and additional information at
https://pdsa.gakhov.com. If you have a comment, technical question
about the book, would like to report an error you found, or any other
issue, send email to pdsa@gakhov.com.

In case you are also interested in Cython implementation that includes
many of the data structures and algorithms from this book, please
check out our free and open-source Python library called PDSA at
https://github.com/gakhov/pdsa. Everybody is welcome to contribute
at any time.


https://pdsa.gakhov.com
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Hashing

Hashing plays the central role in probabilistic data structures as they
use it for randomization and compact representation of the data.
A hash function compresses blocks of input data of an arbitrary size by
generating an identifier of a smaller (and in most cases fixed) size, called
the hash value or simply the hash.

The choice of hash functions is crucial to avoid bias. Although
the selection decision is mostly based on the input and particular
use cases, there are certain common properties that a hash function
should fulfill in order to be applicable for hash-based selection.



2 Chapter 1: Hashing

Hash functions compress the input, therefore, cases where they generate
the same hash values for two different blocks of data are unavoidable and
known as hash collisions.

In 1979 J. Lawrence Carter and Mark Wegman proposed the universal
hash functions whose mathematical properties can guarantee a low
expected number of collisions, even if the input data are chosen
randomly from the universe.

The universal hash functions family H maps elements of the universe
to the range {0,1,..., m — 1} and guarantees that by randomly picking
a hash function from the family the probability of collisions is limited:

Pr (h(ac) = h(y)) < %, for any z,y: z # y. (1.1)

Thus, the random choice of a hash function from the family with
property (1.1) is precisely the same as choosing an element uniformly
at random.

An important universal hash functions family, designed to hash integers,
can be defined as

hir,qy () = ((k - + ¢) mod p) mod m, (1.2)

where k£ and ¢ are randomly chosen integers modulo p with k # 0.
The value of p should be selected as a prime p > m, and the common
choice is to take one of the known Mersenne prime numbers, e.g., for
m = 10% we choose p = M3; =231 -1~ 2-10°.

Many applications can use the simpler version of the family (1.2):
hiiy(z) = (k- z mod p) mod m, (1.3)

this is only approximately universal, but still provides a good probability
of collisions smaller than % in expectation.

However, the above families of hash functions are limited to integers,
that is not enough for most practical applications which require to
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hash variable-sized vectors and are in demand of fast and reliable hash
functions with certain guaranteed properties.

There are many classes of hash functions used in practice and the choice
mainly depends on their design and particular use. In the current
chapter we provide an overview of popular hash functions and simple
data structures that are prevalent in various probabilistic data structures.

1.1 Cryptographic hash functions

Practically, cryptographic hash functions are defined as fixed mappings
from variable input bit strings to fixed length output bit strings.

As stated previously, hash collisions are unavoidable, but a secure hash
function is required to be collision resistant, meaning that it should be
hard to find collisions. Of course, a collision can be found accidentally
or computed in advance. This is why such a class of functions always
requires mathematical proofs.

Cryptographic hash functions are very important in cryptography and
are used in many applications such as digital signatures, authentication
schemas, and message integrity.

There are three main requirements that cryptographic hashes are

expected to satisfy:

o Work factor — to make brute force inversion hard, a cryptographic
hash should be computationally expensive.

o Sticky state — cryptographic hash should not have a state in
which it can stick for a plausible input pattern.

o Diffusion — every output bit of a cryptographic hash should be
an equally complex function of every input bit.

Theoretically, cryptographic functions can be further divided into
keyed hash functions, that use a secret key, and unkeyed hash functions,
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